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THE STABILITY OF PSEUDOSPECTRAL-CHEBYSHEV METHODS
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ABSTRACT

The stability of pseudospectral-Chebyshev methods is demonstrated

for parabolic and hyperbolic problems with variable coefficients. The

choice of collocation points is discussed. Numerical examples are given

for the case of variable-coefficient hyperbolic equations.
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1. Introduction

The purpose of this paper is to analyze spectral Chebyshev collocation

(otherwise known as pseudospectral) methods for hyperbolic and parabolic

problems. We shall show that these methods converge at a rate that is

faster than that of finite differences. The analysis is based upon results

presented in [1]. This reference outlines the general theory of convergence

of spectral methods and proves that if a spectral method is algebraically

stable in some norm, then the method is strongly stable in an algebraically

equivalent new norm. If in addition the method is consistent by virtue of

its truncation error tending to zero in this new norm, then convergence is implied.

The application of this theory to hyperbolic and parabolic problems

had been discussed in [1] mainly for constant coefficient hyperbolic and

parabolic problems and, in the case of Chebyshev methods, mainly for the

Galerkin and Tau methods. In this paper we discuss the collocation

methods and prove stability for the variable coefficient case. The new

idea that enables us to establish stability for collocation methods is a

new quadrature formula for Gauss-type integration. We use the positive weights

given by this formula as the new norm and prove energy conservation in this

norm. Using the same technique a new proof is presented for variable

coefficient hyperbolic and parabolic problems when solved by spectral-

Chebyshev methods using Tau methods. These proofs are more general than

those in [1] in the sense that they include the variable coefficient case.

Section 1

A numerical solution of the problem

u t - Lu (1.1)



where u C H, H is an HRUbert space and L is an infinite dimensional operator,

consists of two steps. The first is to choose a finite dimensional sub-

space of H, say BN, and the second is to choose a projection operation

PN : R - B The approximation to (1.1) becomes

"PNL P uN uN uN '1.2)

which may be solved on a computer. Spectral Chebyshev methods are

defined by choosing B4 as the N-dimensional space spanned by polynomials

of degree N+ k- 1 that satisfy boundary conditions.

There are three ways which have been used to choose the operator PN

namely Galerkin, Tau and collocation.

In the Galerkin method for homogeneous boundary conditions we choose

na - ,...,N as the basis of BN  and solve

Du"-N uN  0 -1,.,
at -

(1.3)
N

UN - an On
a- 1

For the Tau method we choose (0n} to be a set of orthogonal functions

such that (0 '$) 0 6 and expandU M am

N+k

UN - u E a nO
n-1

where k is the number of boundary conditions. Then set

-2-



L UN, 0 It ,...,N (1.4)

rhe condition uN C BN provides the other k equations.

In the collocation method we set

N
uN I n n

nul

and require

au- L uN 0 for x j=,...N (1.5)

It had been observed by Orszag [ i] and Kreiss and Oliger [ 2 ] that the

collocation method can be carried out efficiently in the physical space in

contrast to the Galerkin and Tau methods which must be solved in the

transform space. This fact enables one to use the collocation method

efficiently for nonlinear equations. We refer the reader to [11 for further

discussion of this fact.

In the next sections we will illustrate the above procedure applied to

parabolic and hyperbolic equations.

Section 2

Consider the equation

ut  S(x) u -1 1<

0 < 6 < S(x) (2.1)

u(±l,t) = 0

-3-



In the Galerkin-Chebyshev method we choose

n =T - T0 n even,

(2.2)
On T a - T1 n odd

•:r T Wx = -os (acos- X).I11

N
r.r ,:xnand u.. n a 0 (x) so that uN(l,t) - 0 and set

$ rLA 2

Sf x ' Idx -0 n - 2,...,N . (2.3)

It is readily seen that for nonconstant S(x), it is difficult to solve the

equations for (2.3). Orszag has found some efficient transform methods to

evaluate

- x " 2u N  Onf s(x).--
-1x /1"-x 2

In general, however, solving (2.3) for the coefficients (aol is time consuming.

In the Tau method we set

N+2
u. aT ( T

n-0n

and require

,r.--( 3 s(x)- -j2  d x a o m-,...,N
-1

Lu _,_



together with

N+2 N+2

a T(1) = a =0
n=0 n=0 n

and (2.4)

N+2 N+2

a Tn(-l) = (_) n a = 0
n n n

We face the same complications for getting the coefficients as we had for the

Galerkin method.

In the collocation method we set

N
UN = L a n(x)

n=0

where the n 's are defined in (2.2). Then we demand

au S(x) 2 = 0 at x = x j = 0 .... N (2.5)

for some points xj. If the x. are chosen to be cos N so that the

boundary values are included, there is an efficient way to solve (2.5), by

taking advantage of the orthogonality of the trigonometric functions. Set

N N

UN(x) T U(X.) ( a T (x ) 0 < j < N
N n, n nx UN E n0 nn-- n=O

i -5-



Then

N

a U-2 L u(xk) cost co ucN - 2 (2.5a)-
n N a k O C k kN a 11 < N -Ck - i l<k<N-i.

Using the properties of Chebyshev polynomials we may set

2
?2UN(X-) N

a2  - T n(x.

where the coefficients b may be found fromn

N
cbn = E p(p2-n2)app - n+2

p+u even

Then we go back to the physical space and solve

2
-(x. -s (x)-- 2  (x) .ij z .. ]

U (Xo ) -N(X,) = 0

This procedure is very efficient and may be generalized without any

problem to nonlinear equations. In practice we would use the Chebyshev

polynomials to interpolate u spatially and then to evaluate the spatial

derivative at the desired points x Finally the solution would be

advanced in time using the original nonlinear equation to find the time

derivative at the points x in the physical space.

In order to prove convergence we need the following two results.

-6- .1



Lemma 1.

Let u satisfy u(-l) = 0 and have a continuous first derivative, then

1/ xx dx < 0 (2.6)

For the proof we refer the reader to [1, p. 82].

Lemma 2.

Let x. - cos j = 0,... ,N. Then there exist w. > 0, j=O,...N such thatj N '

1 N
f f(x dx = f(x)w (2.7)

N
LW. = 7T

j=0 J

for any f(x) which is a polynomial of degree at most 2N-1.

Remark: The formula (2.7) is a generalization of the well known integra-

tion rule of Gauss type. Note that w. depends on N. There are two major3

differences between (2.7) and the usual Gauss integration formula for the

2 -'
weight function w(x) = (l-x ) . The first difference is that the Gauss

formulas are of open type, that is the boundary points are not included,

whereas in (2.7) they are included. The second is that the interior points

are not the zeroes of the orthogonal polynomials with respect to

w(x) - (l-x2 )_ namely the Chebyshev polynomial of the first kind, but

rather that they are the zeroes of the Chebyshev polynomial of the second

kind (which are orthogonal with respect to the weight function

w(x) = (l-x )). It is interesting to note that Lemma 2 implies the Gauss

integration formula for the weight function w(x) = (l-x2) , i.e., that

the formula



-i N-1
-i -x g(x) (2.8)

is correct for any 2N-3 degree polynomial. In fact if (2.7) is correct

set f(x) - (l-x2 )g(x) in (2.7) to get

f N 2 N-1(x X E (,x•~ w. (1-x 2)g(xj) wj

-ij-0 i j-1i i
-d

since x0  I, - -1, and the fact that if g(x) is a 2N-3 degree

polynomial then the degree of f is 2N-i. Equation (2.8) is now

2
established with w^ (i-x.) wj.

Proof:

We first note that (2.7) can be made exact for any Nth degrei olynomial
n

by putting f(x) - x , n ".O,...,N and solv --g for the N+i unknowns,

w. since the Vandermonde matrix is aonsingular.J

Let f(x) be now a polynomial of degree 2N-i. Then there are g(x)

of degree N-2 and v(x) of degree N such that

f(x) - (l-x 2)YN(X)g(x) + v(x) (2.9)

where YN-1 is the Chebyshev polynomial of the second kind, i.e.,

IN-i . sin(Ncos-x) (2.10)

Since

Y (x0) jsin1) J- N-1
sin 2N



we conclude that

f(x) v(X) j0O,... ,N .(2.11)

Now

f~)dx =f /,-x 2 Y (x) g(x) dx + f v (x) dx . (2 12)

-1 _-1 -1 ,_

The first term in the right hand side of (2.12) vanishes since Y NIis

orthogonal to any polynomial of degree less than N-i and the degree of

g(x) is N-2. Since v(x) is a polynomial of degree N (2.7) is exact

for it and therefore

N
v()dx , v(x. W.

-f l- j=O

and by (2.11) we conclude that

f(x) dx = ~ ) dx = v(x) w. L f(x. wJ /j_ 2 j= j=

This proves (2.7) except for the fact that w. > 0. To prove that we define

f2.(x) =(l-x 2)y 2_(x)I[Y l(x)(x-XZ)] 2 . 1,... ,N-1

The degree of f2.zxW is 2N-2; moreover, f z (x) = 6 2..(l-x ) andf F (x) > 0, -1 < x < 1. Therefore (2.7) is exact and yields

-9-



Jx ff(x Wj dx - £ fzjx.) w. - (1- 2 )  £.(.3

- x j-(

Equation (2.13) shows that w > 0, Z - 1,...,N-1. Define now

2
YNI(x)

fo(x) (1+x) 2 N2  > 0 (a)

and (2.14)

f = (-x) -N---- > 0 (b)
2N

2 -

fo(x = 0j fN(xj) =Nj

and therefore

w - dx > 0 (a)

1 (2.15)

1f (x)

WN  dx > 0 (b)

-1

and this concludes the proof.

We are now ready to prove the stability of the Chebyshev collocation method

for the heat equation.

Theorem: (Stability)

Let uN be the Chebyshev collocation a- nroximation (2.5) to the heat

equation (2.1). Then

oXpos(x) u '  (2.16)
.0 j M N s(x )jQ0 j iO0

-10-
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Proof:

Since

3u a2uN
NX (x't)= S(xi) - 2  (x) j=I,...,N-1 and

Tt j J ax
and

UN(xO) UN(XN) .

We get

N uN w. N 2

(x (x) w. (2.17)

j0(x) j=a

,2u

By Lemma 2.2 and the fact that the degree of N is 2N-2 we get
uNax 2

2 a uN
Nf I <2 dx

uN (x.) 8" 2  (x) 1 -N-3x
j=0 f ( w N -

The last inequality follows from Lemma 2, since uN(±l,t) = 0. Therefore,

d N 2 w
TUN E] S(xj) -

j=0

and (2.16) follows.

The next step for showing convergence is to show that the truncation

error tends to zero as N-1  tends to infinity. In view of the discussion

in [1, p. 48] the truncation error is given by

[PN S (x) 2L 2 PN- PNS ( x )  x2 U [[(2.18)

; -11-



where u e C is the solution to (2.1), P f(x) is a polynomial of degree

N that interpolates the function f(x) at the points x and

!1~ X MI CO 21 '- o J-0.... AN
E S(x Wo N

Theorem: (Consistency)

Let u, PN and [1 "I be defined as above then

2 2

P s 2N W S(x) -- u II -0 (2.19)N x 2  N x 2  N rl

for any positive r.

Proof:

From (2.5a) we can express PNu by

N a
PNU :- T (x)

where

a N c. Tn (Xj

On the other hand

a0
u(x) -T To +  a Tn(x)

n-I

-_____"_____ 1 .. ,:



where

1 u(x)T n(x)

a 2 dxan= 7 / -12
-x

It is well known that an = 0pL for any p. Moreoever an can be

expressed in terms of the an's by the formula

N T(x.)T(x) N N T (x )T (x )
1 k J n k jn i

a 0 Fa . + E akj=o k-l j=o ij

an +a 2N-n +a 4N-n + ..... (2.20)

and therefore

a2  - a2  N " -

S(x) P - S(X) u S(x) L (a -a )T - S(x) a T" (2.21)
3x2  ax2  n=O n n=N n n

define

00

g(x) = S(x) aTv
n=N n

then

2 N
II g(x) = S(xj a T" (x) w=

j=o n=N

Moreover since Ian - an =0 by (2.20) we get

-13-



Ss(X) Pu - S(z) U 0o2  Nx 2
ax ax LNrJ

and since jfp U - 1 (2.19) is proven.
N

Section 3

In this section we would like to treat the hyperbolic equation

ut - s(x)u1  S(x) > 0 IxI <. 1

(3.1)

u(1,t) - 0

We concentrate upon the collocation method. There are currently two

ways of performing the collocation method. The first one is
irk

to collocate at the point X M cos - , k-l,...,N and to use the boundary

condition for x0 = 1. Thil means that we collocate at N-i points in the

interior of the domain and also at the outflow boundary; we do not collocate

at x - I since a boundary condition is imposed at this point. The other way

is to collocate at the points x2 cos - , kim,...,N-1 and to use the

boundary condition at x 1 a 1. This amounts to using N-i interior points

for collocation and to impose a boundary condition at the inflow. The out-

flow boundary is not treated at all. We would now like to show how to carry

out these two methods effectively.

In order to carry out the first one we expand

N n
-(xa't) T, ak Tk(x,) mr (3.2)

k-0 X M Cos-n N

and solve for ak

-14-



N..c i nrm-

= -L .uN(x tt) cos n 2
k= N t =i (3.3)

k jM ci z 1 009LON

Equation (3.3) is evaluated by using the Fast Fourier Transform (FFT) method.

Now

au N N

S(xnt) " Ebk Tk(xn ) , (3.4)
k-0

where

b N 2pa . (3.5)C k k-p+l p

k+p odd

The evaluation of the right hand side of equation (3.4) is carried out

using FFT. Then equation (3.5) is solved for the bk 's with 0(N)

operations,that is a simple recursive formula is used

bN -0 bN 1 -2Na n

and

1

bk+2 -b k =- 2(k+l)ak+1Ck+2

Then we solve in the physical space.

uN N
a-- (xit) - S(xj) a (xjt) j -1...,N

(3.6)

uN(l,t) = 0

A very efficient time marching techniqu2 which is explicit and uncondi-

tionally stable had been developed in (3] and can be used for the solution

of (3.6).

-15-



The second way of collocation is carried out as follows. Set

N-I a = 0,...,N-t
vN(x n't) F , dk Tk(xa) nm

k-O x nos

It can be shown that dk can be expressed in terms of ak derived

in (3.3). In fact

% " ak+(-)2aN 2 . (3.8)
ck

Equation (3.8) is derived as follows

N-1
*(xn,t) - :a T,,(x) + aL T(xT ]

kmO n N

1- N-I N- N-i

k0 k=O
1:akT k(x)n + (-I) 2a, c k a~X - N kX

k-O k-O k -

for a 0 ,...,N-1.

Now

av N-i
---(xn , t)- F a k Tk(xn)

k-O

where

N
1 2p e (3.9)ck k-p+I

k,4 odd

k .. .. . . . ..- 16- ,



and we solve

!av (x ,t)
avN(Xt) . S(X) ax jl,... ,N- (3.10)at n3

UN(xo, t) - 0.

Observe that uN in the second way of collocation (3.7) - (3.10) is a

polynomial of degree N-i, whereas in (3.2) - (3.6) it is a polynomial of

degree N. The similarity between these two different methods can be seen

auN IUN
in the case where S(x) - 1. Since - is a polynomial of degree N

that vanishes at x = -1 and at the series of T;(x) we get

au auN

S - + T1l+x)TN(x) (a)

and by the same arguumertt (3.11)

av av
N N T

aT- ax + T2 T;(x). (b)

It is interesting to note that for the Tau method one gets the error equation

aR aRN
--- T T X)" (3.12)a aX 3 Nx)

where RN  is the Tau approximation to u. It seems that the Tau method

can be viewed, in the case of the constant coefficient problem (3.12) as

a collocation method based on the collocation points

zk - cos k-i,...,N . (3.12a)

This observation suggests a convenient way of using the Tau method for the

variable coefficient case as well, namely set

-17-



-S~x W 0 x -z k -1,... ,N .(3.13)

This method reduces in the constant coefficient case to the Tau method.

In order to establish stability for the collocation method described in

(3.7) - (3.10) we need the following Le-a:

La

Let xk cos 1-1, k 0,... ,N-l then the quadrature formula
N

I N-1J j~ f(x)dx - ~ ~~ k(3.14)

-I k-O

where

1 2

wk ~ f 2Y/i1:x):
wk -1xk)(Y; (x)]2 I (x-x.,) 2 1i i x

I x
-4 20 Y,-1 (x) /= x 0

is correct for every polynomial of degree 2N-2 or less.

Proof.

Let f(x) be a polynomial of degree 2N-2- Set g(x) - (l+x)f(x). since

Z(x) is a polynomial of degree 2N-1, formula (2.7) is exact.

I 1+.f~)N "q- 1] (~x~~x)dx E (lx0i )wj fc) (x E (1+x )w f W) (3.15)
fL /0 jJ=O



Equation (3.15) implies (3.14) and wkcan be derived by a standard

argument.

Now let v N be the collocation approximation to u gotten by (3.7) -(3.10).

ThenauNa 

N
ct C(x) ax-- x x n n - 1,... ,N-1 (3.16)

Multiplying by N we get from (3.16)

N 1a v N N - 1 l
E V N (x n) (x (n) c(x ) - vNX -ax(Xnyn

N= n = O

and by (3.14)

11 2

-xNdx < 1/+x v2 _1 f ___ dx. (3.17)fj-. V N - 2V l-x VN -12l1
-l au 1 i(1-x)l-x2

The boundary term in the right hand side of (3.17) vanishes since

vN (1) =0 and vN is a polynomial and therefore

d N- 2 ~ n < 0 (3.18)
Tt F1 VN(xn c(x) -

n=0 n

or

N-1 2 N-1 2 Wn
v 2X t) <
vF x N) n9 2..x VN(xn'O c(x)

n-0 N ~ n) n=0 n

-19-



From the definition of w it follows that the norm described by the
n

weights c(xn) is algebraically equivalent to the norm iu which we have

consistency, therefore algebraic stability is proved. The same idea can

be utilized in showing the stabilitv of the Tau method. In fact from (3.12)

it is evident that

(1+Z(z) (z) L(z)a (l+Z) (3.19)jul 1-z1 P4 3 at J) l-z. IN x
i j

where yj are the weights in the Gauss-Chebyshev integration. From (3.17)

it follows that

d E " N N i +x f RN 1 (3.20)
7 2 zi 9t) af -- /dd x <0 (.0

dtl . J - (1) ,-
ju ~-1 Il-' -

which proves algebraii stability.

The stability of the collocation method described by (3.3) - (3.6) follows

immediately from that described in (3.7) - (3.10). It can be seen from

the relation (3.8). In fact, setting

auNaw awI

one gets (3.11)(a) from (3.11)(b). This completes the discussion of

collocation method for scalar equations. We refer the reader to [4] in

which proper ways of implementing spectral methods for systems is discussed.

Section 4

The proofs presented in the last section were confined to the case in

wii'h c(x) does not change sign. This might be a weakness of the theory rather

-20-



than that of the collocation method. Numerical experiments using the pseudo-

spectral methods have indicated that there is. no instability, that is they

show the solution does not grow with N even when S(x) changes sign.

There might be problems owing to growth in time of the solution or to the

existence of a stationary characteristic in the neighborhood of either the

boundary or some interior point. But these problems seem to occur because

of lack of spatial resolution and not because of stability. In order to

illustrate this fact let us consider two equations:

ut  = -x u Xx 1=-xu xI~l(4.1)

u(x,O) = f(x)

and

u t = xu xxl < 1

u(x,O) = f(x) (4.2)

u(±l,t) = 0

We attempt to solve (4.1) and (4.2) by the Chebyshev collocation method.

According to the popular belief, there should be instabilities in the solu-

tion since x changes sign in the domain. However, as indicated in Table

I below no such instabilities were found. As a matter of fact we can prove

Theorem:

The Chebyshev collocation method for (4.1) is stable.

Proof:

Let uN be the Chebyshev approximation to u gotten by the collocation

method. Then

uN + uN 0 xo

-u- + X = 0 x Cos iN j-O,...,N (a) (4.3)

k-21-



as in (3.2). Or

)vN IV csZ-- + 0 - Cos ..... 1-1 (b) (4.3)

ax

as in (3.7). Since uN  is N 
h degree polynomial and vN is N-i degree

* polynomial, we get

Nt - N ax < X <1 (4.4)

where w is either u, or vN.

We now refer the reader to ([I], p. 85-87) for the proof that (4.4)

implies stability.

Theorem:

The Chebyshev collocation approximation for (4.2) is stable.

Proof:

Now uN satisfies

a N  aucos

at ax a

UN( -lt) - 0

Note that (4.5) has boundary conditions in contrast to (4.4).

Let w. be defined in (2.7). From (4.5) it is clear thatj

-IU,(I U N-1 X. auL
- at (-o Z U N (xj) (xi) w

-. uN(x.) (xj axj0J-0 :+i' - 5" -

2

S- uN dx N (l-x+X) 0
(lx) l l-x")



and that proves stability.

It goes without saying that the proofs of the last two theorems can

be extended to all the functions c(x) such that c(x) is of constant

x

sign. We conjecture that it is true for any c(x).

In Table I we show the results of applying the Chebyshev-pseudospectral

method to four equations.

The first equation is

ut = (l+x)a x  xI (a) (4.6)

u(x,O) = sin 7x

u(l,t) = sin(2e t-l)7T

The solution to this problem is

u(x,t) = sin7r[(l+x)et -11 (b) (4.6)

This problem has a characteristic boundary at x = -1, moreover for

large t the solution has a large variation in the neighborhood of

x =-1.

The second problem is

ut = (l-x)u x  (a) (4.7)

u(x,O) = sin Trx

The solution is given by

u(x,t) = sin n[l-(l-x)e (b) (4.7)

-23-



The line x - I is a characteristic boundary but in contrast to the equa-

tion (4.6) the neighboring characteristics point from the boundary towards

the domain. The third is

u = x u (a) (4.8)

u(x,O) = sin 1Tx

u(l,t) - sin(T7e )

u(-l,t) - -sin(7e t)

The solution is

u(x,t) = sin(nxet) (b) (4.8)

And the fourth is

Ut = _xu x  (a) (4.9)

u(x,O) = sin rx

where

u(x,t) = sin(-,xe- t) (b)

All these problems were solved by Chebyshev pseudospectral methods with

the modified Euler time marching techniques. With the time step At -1/Axi

we advance from the time 0 to the time t - 2. Note that since

x- - 21then Axmin% 0 I1L
In Table I we show the L2 Chebyshev errors of the solution of the

problems (4.6) - (4.9). It is clear that the Chebvshev collocation method

was stable for all these problems and has the same rate of convergence.



However, the errors for problems (4.6) and (4.8) were much larger than

those of (4.7) and (4.9). In fact taking 64 modes in the solution of (4.6)

and (4.8) produce the same error that 17 modes produce for (4.6) and (4.8).

This is a problem of accuracy and not of stability. The question now is do

we retain spectral accuracy? To answer this question we ran the problem

(4.8) with smaller and smaller time steps until the results were not

changed which means that we get the space accuracy. For 17 modes we got

-1 -5
an L 2 error of 1.16.10 -

, whereas for 33 modes we got an error of 6.10

This indicates the fact that the order of accuracy in space is indeed better

than any algebraic order.

Conclusion

It has been shown in this paper that the pseudospectral-Chebyshev

methods are convergent in variable coefficient parabolic problems and in

some cases to hyperbolic problems. The analysis shows that the rate of

convergence is greater for finite difference methods or the finite element

method. It seems that for a single first order hyperbolic equation the

method remains stable even when the coefficient changes sign, though in

this case care must be taken to have adequate spatial resolution. This

fact, combined with the fact that collocation methods are easy to apply

in the nonlinear case, shows that pseudospectral metlod is in general

preferable to Galerkin or Tau methods.
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TABLE I. L 2  Chebyshev errors for the silution of (4.6) -(4.9).

I N 1u=(l+x)u I ut (1-x)u u uu=-U

t~ 1 6

17 I1.13 * 101 9.4 * 106 1.16 , 101 2.05 10

33 1.79 - 10- 4.7 -10- 2.59 *10- 1.05 *107

65 8.5 -10- 2.2 -10- 1.22 * 10- 5 * 10 -
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